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Ginzburg-Landau model for mode competition and single-mode operation of a free-electron laser

C. S. Ng and A. Bhattacharjee
Department of Physics and Astronomy, The University of lowa, lowa City, lowa 52242
(Received 23 April 1998

Mode competition of a free-electron laser is modeled by the Ginzburg-Landau equation. The stability of a
single-mode solution is analyzed, and connections are established with known instabilities of the Ginzburg-
Landau equation. It is found that the principal mode with the largest gain is always stable and hence there is
no Benjamin-Feir instability. However, the Eckhalas phasg instability generally occurs if the frequency of
a mode lies outside of a designated range centered on the principal mode. Under certain conditions, the
Eckhaus instability can cause a sudden chaotization and spikiness in the radiation field. Analytical criteria and
scaling for single-mode operation are given and tested by numerical simulations. A theoretical controversy on
single-mode operation of the free-electron laser at the University of California at Santa Barbara is resolved.
[S1063-651%98)16009-9

PACS numbeg(s): 41.60.Cr, 52.35.Mw

I. INTRODUCTION great interest for many applications. There is experimental
evidence from the FEL at the University of California at
Santa BarbardUCSB) that such a possibility is realizable
with long-pulse electron beanfi7]. Although there is the-

A 2 oretical controversy18,19 as to whether the FEL at UCSB
o ; _ ; 2 actually attained a single-mode state, there is little doubt that
Jz At(Lticy) Ed (L+icy)|Al%A, @ the optical beam in the experiment showed a clear tendency

to operate on a very narrow bandwidth.

whereA(z,t) is a complex scalar field; andt are real inde- We show by analysis and numerical simulation that the
pendent variables, and;, andc, are real parameters. The GLE provides useful insight on how single-mode operation
main purpose of this paper is to analyze the issue of modgVvolves out of the nonlinear interaction of multiple modes. In
competition and single-mode operation of a free-electron laparticular, it yields specific analytical conditions on when
ser(FEL) using the GLE as a nonlinear model of the radia-Single-mode operation is stable, when instability occurs, and
tion field. In so doing, we establish connections with a richdescribes the impulsive nonlinear growth of the instability
mathematical literaturéwith antecedents in hydrodynamics eading to a chaotic and spiky optical beam. We show that
[1-8]) on single-mode solutions of the GLE, their stability, the model helps resolve the theoretical controversy as to
and the chaotic dynamics following an instability. TheseWhether single-mode operation was realized in the UCSB
connections allow us to view FEL operation in the nonlinearFEL [17]. We also discuss briefly the implications of the
regime from a new perspective and resolve an old Contro[ﬂOdG' for Self-amplified spontaneous emission in the X-ray
versy. FEL device proposed to operate at the Stanford Linear Ac-
The GLE was first proposed as a model for the nonlineafelerator CentefSLAC).
evolution of the radiation field\(z,t) in a FEL by Cai and
Bhattacharjed 9], who were motivated by observations of Il. DERIVATION OF THE GLE
optical “spiking” in several experimentsl0—13. There are . L
other theoretical models of FEL’s, which also arrive at a Y€ begin with a new derivation of the GLE for a FEL
reduced version of the GLEL4—1§. In these models, the amplifier in 'ghe hlgh—_gam regime. We. do_not conS|der_the
radiation field is assumed to be a function onlyzoConse- problem of s!depand instabiliti¢®0], which introduce addi-
quently, they arrive at an ordinary differential equation thattional complications well beyond the scope of the present
can be obtained from Eqd) by simply setting the time Paper. We start with the standard one-dimensional equations
derivative to zero. This reduced version of the GLE, derived©r @ Compton FEL:
in [16] under the assumption that the FEL radiation field is

The complex Ginzburg-Landau equati@@BLE) is a par-
tial differential equation of the general form

already in a single-mode statésupermode™), can be used dy; Keday .
to describe the linear and nonlinear properties of the single Gz, sin(¢;+ é), (29
mode. But unlike the partial differential equati¢h, it can- !
not describe the interesting nonlinear dynamics of mode
competition—how a stable single-mode solution can evolve diy; %2 K, as
out of an initial condition involving multiple modes, or how dz - kw[ 1= =5+ ——— cod¢;+ ¢), (2b)
an unstable single-mode solution can lead to the spontaneous Yi Yi
nonlinear excitation of multiple modes. 2 )

The possibility that a FEL can produce a powerful and %:i aywp [exp—iy) 20
coherent optical beam of a single frequency is potentially of dz ' 2k ? v '
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Here z is along the axis of the undulator that has magnetic

vector potentialA,, and wave numbek,,; #;+¢ is the
phase of thejth electron(of rest massm, chargee, and

energyyjmcz) with respect to the radiation field determined

by the vector potentialhg, reference frequencwg, and
wave numberk,=w¢/c; a,=eA,/mc, a;=eA/mc, u
=a, exp(¢); 7=
wp is the plasma frequency. It has been sh¢@4] that Egs.

(2a)—(2¢) are approximated well by the reduced set of equa-

tions
—A—'5A i 3
a7 +igXx, (33
dx_ ih 3b
FERL (3b)
dy . :
d—z=|fA—2|[hy0(y—xy0)—5xy0+f(x*A+A*x)x],

(30

for collective variables x=(exgd—i(;— )], y=([(7

— o) volexd —i(y— wr)]> and A=u exp(), where
di, /dz= 6=k, (1— 7r/yo) and 70 is the initial energy of

the electron beam:f=kga,/2y3, g=o aW/2kSyoc h
=ky(1+a2)/y3. Equationg3a)—(3c) admlt the energy con-
servation  relation yo={(v¥;~ v0)! vo)=f[|A(z=0)|?
—|A|?)/g~—f|A|?/g. We linearize and factorize Eq8a)—
(30) to obtain
d
dz

ENENEIS

where A1,\5, A3 are the three roots of the equatic)rf)
—5)\0+fgh 0. At resonance §=0) we obtain fgh
=8p°k3, where p= 1y, "(ayw,l4ck,)?? is the so-called

(4)

Pierce parameter. The Ilnear solution is quickly dominatedyz

by the most unstable eigenvalue, and can be writagm
proximately asAxexp(\y2), whereo(=A,+i)\;) is the ei-
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ko(1+ afv)IZkW is the resonant energy and
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FIG. 1. Solid line: the linear gain{\;) as a function of the
frequencyw for p~3.87x1072, with \; measured in units ok,
and o measured in units of #ck,/(1+a2). Dashed line: the
linear gain curve for the GLE, expanded around the reference fre-
guencyw=ws. The solid gain curve has a maximum at w,,
which is close to the frequency of maximum gain of the dashed
curve.

We now write d/dz— d/dz+c1a/t, and treatA as a
function of z and t with a Fourier spectrum in time. We
expand\o(w) around a reference frequeney ws,

Mg 1 %\, )
ko(w)%?\o(ws)Jr&— Aw 3 902 (Aw)
N . Mg . 0 13Ny & .
— No(ws) o 72 90? a2 (7

whereAw= w— ws. It follows from Egs.(5) and(7) that

aA A 1 A iaa2A+_ AZA g
=ik —gﬁfﬁz'lgH, 8

wherevg=c/(1+Cci\g/dw) anda=3°\o/dw? are complex

genvalue with a negative imaginary part. In Fig. 1, the solidparameters. We now write dd=u,+iu;, a=a,+ia;, B

curve shows a typical linear gain-(\;) as a function ofw
for a small value ofp, where w is measured in units of
2y3ck,/(1+a2). In this unit, =1 is the frequency when
the resonance conditiaf~ 0O is satisfied. For small values of
p, the resonanb is close to the frequency,, at which the
gain is maximum.

Including the effect of the first-order nonlinearity [iA|?,
Eq. (4) becomes

d
~ in—iglAl2| A~
;H,g(dz iN—iBlA| )A (5)
whered|A|?/dz~— 2 Im \¢/Al? and
—2fh(Ag— 8)(Ag+2 ReXg— )/g ©

T 2IMAG[2 1M Ag—1(3Ng— )] — 3N2+20Ng”

=B, +iBi, and apply the transformations A
=AcA’exdi(KZ +QOt")], z=zy2', t=tot’' — 2/ vy, where
o= U(— N+ ufl2ar),

IS: aiZo/Z,

Q= pitolei, Uvg=—pu+arpila;, 9

K=(\—a,ul20%)zy, Ad=1Iz,B;.
Equation(8) then becomes the GLE in standard fo(t),
where c;=—a,/a; and c,=—B,/B; are real parameters
and all primes have been dropped for notational conve-
nience.

In Eq. (7), truncation of the Taylor series at second order
implies that we approximate the linear gain curve around
= wg by a parabola. In Fig. 1, this parabola is shown as the
dashed curve with the reference frequergychosen to be
slightly less than the maximum gain frequensy,. For the
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GLE, the maximum of the gain parabola is obtained at the 1.5 — T T T
frequencyws— wi/a;, which is a good approximation for 1
the maximum gain frequenay,, of the true gain curve with
wm=ws— uilai+O(|on— wg?) provided og is close to
omn- Thus the frequencies for maximum gain of the two Lok
curves in Fig. 1 are very close to each other, as shown. I
1+c,cy |

Ill. SINGLE-MODE SOLUTION AND ITS INSTABILITIES r

Equation (1) has an exact single-mode solution of the 05k
form

A= \1—wf expi{[ —C+(C—C1) wh]z— wot + o},

(10)
0.0 ! . I . | . I .

where wg, ¢, are real constants. By Eqé7) and (9), the 108 107% 107* 10% 10 107
frequency of the radiation field is given hy= ws— wi/; P

+ wqo /to .

Single-mode solutions of the GLE may suffer two types
of instabilities [1-5]. The first type is known as the
Benjamin-Feir instability when every mode is unstable.
such an instability were operative in a FEL, it would be .
impossible to realize single-mode operation. The second typ!é1 order for the mode to be. ungtabl&e,must have'a positive
is known as the Eckhaus instability, which is said to occurreal part(for somgwd), which is possible only if 3c,c,
when a single-mode solution is stable if its frequency lies~0- For the '_:EL’ i we choosg the referencg frequency as the
within a designated range, but unstable outside of that rang&€dueéncy with maximum gaines=wp), it is easy to see
We now analyze these instabilities in the context of FEL's. that the quantity %C1C22depe”ds oznly om. In the limit p

We first consider the maximum gain mode with=0.  —0, we obtainwy,—2ygek,/(1+a,) and 1+c,c,—4/3,
unstable, so are all other modeShe linear stability of this  Nonzero values gf, since we do not have a simple analytical
mode can be examined by writing the perturbed radiatioformula for either the parameteoy, or the coefficient 1
field as A=(l+a)expi(—czt+dy+6), where a +c4C,, We carry out a numerlcal calculation. In Fig. 2, we
=3 cosfwgt) and P cos4) are small and real perturba- plot 1} C4C, as a function ofp. Since most FEL’s are ch_ar-
tions[5]. Linearizing Eq.(1), we obtain a}cte_rlzed by s_maII values'q»f, we see that +c4c, is posi-

tive in the regime of physical interest. We conclude that the

FIG. 2. The Benjamin-Feir stability parametet-t,c,, evalu-
ated at maximum gain withs= o, andwy=0, as a function of the
If Pierce parameteps.

d (2 -2— i c,wi\ (2 single modew = w,, with maximum gain is stable, and hence
—12= _on 2 2|7 (11)  there is no Benjamin-Feir instability. This is consistent with
dz\éo 2C2 Ciwy Wy 6 . -
the earlier findings of18] and[19].
The eigenvalues for exponential solutions of Etfl) are Although the maximum gain mode withy=0 is linearly
stable, a mode withwo|#0 may be unstable to the Eckhaus
A=—(1+03) = J(1+03)?— (1+c))wj—2(1+cic) w3 instability. To examine this possibility, we consider the lin-

(12 earized equations

a
0

a

0

d

az : (13

2 : .
_ —2a,— wy— 2iC1wowqy 03— 2iagwowy
= i 2 .
—2C2a0—(01w§—2|w0wd)/a0 —wd—2lclw0wd

Whereagzl—w§> 0. The corresponding eigenvalues are

A= wg— 1- wg— 2iC1wowdi{(wg— 1)°— ZClwé[Cz(l— wg) + Cle/Z] + 4wgw§+ dic,wowg(1— w%) + 4iclw0w§}”2.

(14
In the limit of smallwy, Eq. (14) reduces to
wd~>0 _2(1_ w(z))y
A 20} o . (15)

0 2 .
2| 1+c4Cy S 1 (1+c3) 5 2iwgwy(Cy—Cq)
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We observe that the single mode of frequengyis unstable 1000 e
if the square bracket of the lower expression in Ekp) is :
negative. Note that this is true for evesy, if 1 +c¢,¢,<0; 100

however, if 1+c,¢,>0, the mode will be unstable when
w§>(1+clcz)/(3+c1c2+ ch), which can always be satis-
fied in the range % w3>0. Therefore, the Eckhaus instabil-
ity will always occur.

From Eq.(13), in the smallwgy limit, we see that the un-
stable eigenvector is phase-aligned. In fact, the ratio of the i ]
phase component to the amplitude component in an eigen- 0.1k 1
vector is given by g R

10¢

Aw 1

~ 0.01k d
6 283+ wi+2ic,wewgt A 16 : ]
a B Claowé_ 2ia0w0(ud ’ ( ) 0.001 ] T R R R R
0001 001 01 1 10 100 1000
which is finite in the limit of zerowy for the upper eigen- z/c (us)

value in Eq.(15), but tends to infinity for the lower unstable
eigenvalue. In this limit, the Eckhaus instability is the phas
instability discussed if19]. Furthermore, we see from Egs.
(15 and (16) that for a stable mode, the decay rate of the
amplitude perturbatior{for small wq) is much larger than
that of the phase perturbation, as emphasizdd %

We define the spectral width asAwg=((wq

2\1/2 = (*®

Ofaid)) " where <wd>_f‘“wd0(9diz)dwd/ mensionless variable in E¢l).] We see that\w decays by
JZ»0(wq,2)dwg. From Eg. (125)', we obtain 8(wd.2) 4ot two decades whea increases by roughly four

= 0(wq,0)exp(\2)~- bp exH (—hwytihwg)z] for the lower  gecades—consistent with the analytical scalingez 2
eigenvalue, wheré,, hy, andh, are constants. Thus, we which appears to persist untlw is reduced to about one
deduce that the spectral half-width decays A4svy  mode. The dotted curve is th@ormalized spectral width
=(2h,2) " M2xz"Y2 consistent with the scaling reported in Aw,, calculated on the basis of the frequency spectrum of
[19]. Note that this scaling applies to a continuum of modesthe amplitude ofA. We note thatAw and Aw, are of the
As shown below, for discrete modes the scaling holds untisame order of magnitude for a short, initial interval an
the spectral width is reduced to about one mode, after whiclthereafter Aw, decays at a much faster rate{ 1) than

e FIG. 3. The evolution along/c (us) of Aw (solid line) and
Aw, (dotted ling (in units of the number of longitudinal modes

a simulation of the GLE initialized with small random Fourier am-
plitudes for c;~—0.580 andc,~—0.574. The final state is a
single-mode solution with frequency close to the central frequency
W .

the width decays much faster than®2. Aw. This suggests that the amplitudeAbecomes approxi-
mately constant well before the full solutigmcluding the
IV. NUMERICAL SIMULATIONS phaseg attains a true single-mode state. The phase perturba-

tions decay much slower than amplitude perturbations, in
To test the analytical predictions discussed above, wagreement witj19]. The amplitude becomes roughly con-
have developed a pseudospectral computer code that intstant(whenAw,~1) atz/c~5 us. At this stageAw can be
grates the GLE. The coefficients andc, are calculated for viewed as a “macromode,” consisting of 10-20 eigen-
the parameters of the UCSB FHI7]: k,=175m%, ks  modes. This macromode eventually decays to one eigen-
=15.7mm?, a,=0.3, wp/ck,=0.012, andy,=7. (With mode atz/c~1 ms, but that is much longer than the electron
these parameterg~2.87x10 2 and the effective current pulse length(~50 us) in the experiment.

density is 4.410* Am~2) The spectral measurements of the UCSB FEL, reported in
We first consider the maximum gain modes=w, [22], appear to be consistent with our interpretation. We il-
~750 GHz, which is stable becausgy~—0.580, c,~ lustrate this further in Fig. 4, which provides detailed infor-

—0.574 and the stability condition+1c,c,>0 is satisfied. mation on the radiation field a&/c~2.1 us. Figure 4a) of

We use periodic boundary conditionstiand expandA in a  the Fourier amplitude spectrum shows nearly 50 modes in

Fourier series of terms with relative frequencies that are multhe frequency half-width. It is, therefore, not surprising that

tiples of the frequency widtldws. The simulation is initial-  the time series of the real part of the amplitude, has a

ized (at z=0) with random small values distributed over very spiky structurglFig. 4b)] and the phaseb exhibits

2048 Fourier modes. The unit of time is chosen such that théarge temporal variationd=ig. 4(c)]. However, this temporal

ratio of longitudinal frequency spacing to the principal fre- structure is not seen ipA|? [Fig. 4d)], which has already

quency is given bysws/ws=2x10"3/75, similar to that in  relaxed to a nearly constant value.

the UCSB experimentl7]. It is interesting to note that our scaling results are derived
The solid curve in Fig. 3 shows the evolution of tmer-  from equations that apply to a high-gain FEL amplifier, as in

malized spectral widthAw (in units of the number of longi- [18], but are actually in agreement with the “klystron

tudinal modesas a function ofz/c (in units of 1 us). [Here  model” developed in19] for a FEL oscillator. We do not

z is the actual physical distance along the axis, not the dibelieve this is mere coincidence. It suggests that the nonlin-
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0.00 . . hid -4 S | ]
-400 -200 (V] 200 400 00 02 04 06 08 1.0 0'1OO§ 3
6 T T (b) T
A . ;
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107 107* 1073 1072 107! 10° 10!
2r ] z/c (us)
‘ FIG. 5. The evolution along/c (us) of Aw (solid curve and
0 L L L .

00 02 04 06 o8 10 Aw, (dotted curve for the case ofc;~—0.009 44 andc,~
R (Q) R —4.25 starting with an Eckhaus-unstable single-mode solution.

FIG. 4. (a) Fourier amplitudeA,, as a function of the Fourier
mode numben with the gain parabola plotted in arbitrary unitb)
A, , the real part of the amplitudéc) the phaseg, and (d) the
amplitude squargA|? of the radiation field plotted as a function of
time in one simulation period, which is about 316 at z/c
~2.1us in the run with the parameters of Fig. 3.

state, at least as long as we are able to follow it numerically,
leading to “phase turbulence” of the type reported[#i.
Figure 6 shows the magnitud®, of the Fourier modes, in-
dexed byn, of one such chaotic state, with the parabola
showing the shape of the gain curé&he precise value af
is not important here since we will see the same qualitative
ear physics of mode competitiofin the absence of side- picture for anyz within the chaotic statg.We see that the
bands is probably similar in an amplifier and an oscillator. A energy is distributed over a wide range within the positive
derivation of the GLE from the low-gain oscillator equations gain region, although the distribution is not as even between
(including the appropriate boundary conditipngill be the  the competing modes as the gain curve might suggest. As is
subject of a future paper. evident from Fig. 7, the power in this chaotic state is very
Next, for the same FEL parameters but with 512 Fourierspiky. The width of the spikes varies over a rather large
modes, we consider a single-mode solution with, range, with some spikes characterized by widths of the order
=0.977w, and wg= uitg/@;, which corresponds te@,~ of (—a;/2\;)Y?, given by the solitary-wave solution of the
—0.009 44 anct,~ —4.25. When we add a small perturba- GLE [9]. [The width of the solitary-wave solution is repre-
tion, the system becomes unstable to the Eckhaus instabilitgented in Fig. 7 as the width of the bdthick line) in the
although the principal mode is stable. Two distinct types ofmiddle top region. It thus remains a possibility that some of
behavior can then occur: either the system undergoes spothe spikes observed in experimeni-13 are a result of
taneous self-adjustment by shifting the unstable mode to arthe Eckhaus instability of a single mode even without the
other mode inside the stable range, or the instability grows
virulently, exciting multiple modes and producing a chaotic g T
state. The type of behavior seen in any particular case de- . —
pends extremely sensitively on the initial conditions. In Figs.
5-7, we illustrate by example the second type of behavior.
The upper(lower) curve in Fig. 5 showsAw (Aw,) as a
function of z. Both quantities—-Aw as well asA w,—are of
the same order of magnitude initially due to the smallness of
the perturbation initiating the instability. This is followed by .
a range irz over whichAw is larger tham\ w, by more than L
an order of magnitude, although neither quantity is very 5
large. Thus, in the linear regime, the amplitude perturbation
grows more slowly than the phase perturbation, consistent
with our interpretation of the Eckhaus instability as a phase I
instability. In the nonlinear regime, due to strong mode cou- W
pling, bothAw andA w4 grow very rapidly and impulsively, e e b
and the system evolves to a nonlinear state consisting of ~100 —50 0 50 100
approximately 40 modes. Although the principal mads n
well as modes in a narrow range around the principal mode FIG. 6. AmplitudeA, in unit of 10°°> m e, as a function of
is linearly stable because+ic,c,>0, the system does not the Fourier mode numberfor the same parameters as Fig. 5. The
decay to a single-mode state. Instead, it evolves to a chaotigin curve, a parabola, is also plotted in arbitrary units.
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FIG. 7. Amplitude squar¢A|?, in unit of 10 m?c%e?, as a 1000~ 77 T L

function of time in one simulation period which is about 12§ at
the samez as Fig. 6. The width of the botthick line, middle top
represents the solitary wave width- @;/2\;) Y2

intervention of sideband instabilities.

We now apply the GLE to mode narrowing in the pro-
posed Linac Coherent Light SourdeCLS) device at SLAC,
which is expected to generate x rays from ndi28|. At the
end of a single pass of the undulator, the radiation field is in
the early nonlinear saturation pha&es seen inf23]), and
sideband amplitudes are sufficiently small that the GLE re-

100

mains applicable. Figure 8 shows the results of a simulation z (m)

of the GLE using LCLS parametef23], with random initial ol :
condition of the radiation field. While Fig.(8 shows the 0 20 40 60 80 100
time-averaged radiation power along the undulator axis, Fig. (b)

8(b) shows the evolution oAw andAw,. We see that the
spectral width decreases initially in the linear phase, then FIG. 8. (a) Time-averaged radiation field pow&W) as a func-
increases slightly when the power starts to saturate, and théien of undulator lengtrz (m) in a simulation of the GLE using
decreases again. With an undulator 100 m long, the planndeCLS parameters with random initial conditiof) The evolution
LCLS device exhibits some tendency for mode narrowing0f Aw andAw, (in unit of the number of modesn simulation(a).
but sinceA w, is of the same order asw, we cannot expect
either the multimode amplitude or the phase perturbations t

decay in a single pass. For a longer undulator, the GLE must \yhen the Eckhaus instability occurs, it can lead to two
be modified to include the effects of sidebands, which mayjistinct types of behavior: either the system undergoes spon-

mode operation did not occur in the UCSB FEL experiment

broaden the spectrum. This is left to future work. taneous self-adjustment by shifting the unstable mode to an-
other mode inside the stable range, or the instability grows
V. SUMMARY virulently, exciting multiple modes and producing a chaotic

state. The second type of behavior can thwart single-mode

The GLE gives a remarkably precise and detailed descripeperation, and in the nonlinear regime, produce a sudden and
tion of mode competition and single-mode operation of arapid chaotization of the optical signal. This is a regime that
FEL. We have obtained analytical conditions for thehas not received sufficient attention in FEL experiments,
Benjamin-Feir and Eckhaus instabilities of a single-mode sowhich can be an interesting test-bed for theories of “phase
lution. We have shown that the mode with maximum gain isturbulence.”
always stable, and hence there is no Benjamin-Feir instabil-
ity. However, the Eckhauér phase instabilityalways oc- ACKNOWLEDGMENTS
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