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Ginzburg-Landau model for mode competition and single-mode operation of a free-electron lase

C. S. Ng and A. Bhattacharjee
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242

~Received 23 April 1998!

Mode competition of a free-electron laser is modeled by the Ginzburg-Landau equation. The stability of a
single-mode solution is analyzed, and connections are established with known instabilities of the Ginzburg-
Landau equation. It is found that the principal mode with the largest gain is always stable and hence there is
no Benjamin-Feir instability. However, the Eckhaus~or phase! instability generally occurs if the frequency of
a mode lies outside of a designated range centered on the principal mode. Under certain conditions, the
Eckhaus instability can cause a sudden chaotization and spikiness in the radiation field. Analytical criteria and
scaling for single-mode operation are given and tested by numerical simulations. A theoretical controversy on
single-mode operation of the free-electron laser at the University of California at Santa Barbara is resolved.
@S1063-651X~98!16009-9#

PACS number~s!: 41.60.Cr, 52.35.Mw
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I. INTRODUCTION

The complex Ginzburg-Landau equation~GLE! is a par-
tial differential equation of the general form

]A

]z
5A1~11 ic1!

]2A

]t2 2~11 ic2!uAu2A, ~1!

whereA(z,t) is a complex scalar field,z andt are real inde-
pendent variables, andc1 and c2 are real parameters. Th
main purpose of this paper is to analyze the issue of m
competition and single-mode operation of a free-electron
ser ~FEL! using the GLE as a nonlinear model of the rad
tion field. In so doing, we establish connections with a r
mathematical literature~with antecedents in hydrodynamic
@1–8#! on single-mode solutions of the GLE, their stabilit
and the chaotic dynamics following an instability. The
connections allow us to view FEL operation in the nonline
regime from a new perspective and resolve an old con
versy.

The GLE was first proposed as a model for the nonlin
evolution of the radiation fieldA(z,t) in a FEL by Cai and
Bhattacharjee@9#, who were motivated by observations
optical ‘‘spiking’’ in several experiments@10–13#. There are
other theoretical models of FEL’s, which also arrive at
reduced version of the GLE@14–16#. In these models, the
radiation field is assumed to be a function only ofz. Conse-
quently, they arrive at an ordinary differential equation th
can be obtained from Eq.~1! by simply setting the time
derivative to zero. This reduced version of the GLE, deriv
in @16# under the assumption that the FEL radiation field
already in a single-mode state~‘‘supermode’’!, can be used
to describe the linear and nonlinear properties of the sin
mode. But unlike the partial differential equation~1!, it can-
not describe the interesting nonlinear dynamics of mo
competition—how a stable single-mode solution can evo
out of an initial condition involving multiple modes, or how
an unstable single-mode solution can lead to the spontan
nonlinear excitation of multiple modes.

The possibility that a FEL can produce a powerful a
coherent optical beam of a single frequency is potentially
PRE 581063-651X/98/58~3!/3826~7!/$15.00
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great interest for many applications. There is experimen
evidence from the FEL at the University of California
Santa Barbara~UCSB! that such a possibility is realizabl
with long-pulse electron beams@17#. Although there is the-
oretical controversy@18,19# as to whether the FEL at UCSB
actually attained a single-mode state, there is little doubt
the optical beam in the experiment showed a clear tende
to operate on a very narrow bandwidth.

We show by analysis and numerical simulation that
GLE provides useful insight on how single-mode operat
evolves out of the nonlinear interaction of multiple modes.
particular, it yields specific analytical conditions on whe
single-mode operation is stable, when instability occurs,
describes the impulsive nonlinear growth of the instabil
leading to a chaotic and spiky optical beam. We show t
the model helps resolve the theoretical controversy as
whether single-mode operation was realized in the UC
FEL @17#. We also discuss briefly the implications of th
model for self-amplified spontaneous emission in the x-
FEL device proposed to operate at the Stanford Linear
celerator Center~SLAC!.

II. DERIVATION OF THE GLE

We begin with a new derivation of the GLE for a FE
amplifier in the high-gain regime. We do not consider t
problem of sideband instabilities@20#, which introduce addi-
tional complications well beyond the scope of the pres
paper. We start with the standard one-dimensional equat
for a Compton FEL:

dg j

dz
52

ksasaw

g j
sin~c j1f!, ~2a!

dc j

dz
5kwF12

g r
2

g j
2G1

ksawas

g j
2 cos~c j1f!, ~2b!

du

dz
5 i

awvp
2

2ksc
2 K exp~2 ic!

g L . ~2c!
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PRE 58 3827GINZBURG-LANDAU MODEL FOR MODE COMPETITION . . .
Here z is along the axis of the undulator that has magne
vector potentialAw and wave numberkw ; c j1f is the
phase of thej th electron ~of rest massm, chargee, and
energyg jmc2! with respect to the radiation field determine
by the vector potentialAs , reference frequencyvs , and
wave numberks5vs /c; aw[eAw /mc2, as[eAs /mc2, u
[as exp(if); g j

2[ks(11aw
2 )/2kw is the resonant energy an

vp is the plasma frequency. It has been shown@21# that Eqs.
~2a!–~2c! are approximated well by the reduced set of eq
tions

dA

dz
5 idA1 igx, ~3a!

dx

dz
52 ihy, ~3b!

dy

dz
5 i f A22i @hy0~y2xy0!2dxy01 f ~x* A1A* x!x#,

~3c!

for collective variables x[^exp@2i(cj2cr)#&, y[^@(g j
2g0)/g0#exp@2i(cj2cr)#&, and A[u exp(icr), where
dc r /dz[d[kw(12g r

2/g0
2) and g0 is the initial energy of

the electron beam;f [ksaw/2g0
2, g[vp

2aw/2ksg0c2, h
[ks(11aw

2 )/g0
2. Equations~3a!–~3c! admit the energy con

servation relation y0[^(g j2g0)/g0&5 f @ uA(z50)u2

2uAu2#/g'2 f uAu2/g. We linearize and factorize Eqs.~3a!–
~3c! to obtain

S d

dz
2 il1D S d

dz
2 il2D S d

dz
2 il3DA50, ~4!

where l1 ,l2 ,l3 are the three roots of the equationl0
3

2dl0
21 f gh50. At resonance (d50) we obtain f gh

58r3kw
3 , where r5g0

21(awvp/4ckw)2/3 is the so-called
Pierce parameter. The linear solution is quickly domina
by the most unstable eigenvalue, and can be written~ap-
proximately! asA}exp(il0z), wherel0(5l r1 il i) is the ei-
genvalue with a negative imaginary part. In Fig. 1, the so
curve shows a typical linear gain (2l i) as a function ofv
for a small value ofr, where v is measured in units o
2g0

2ckw /(11aw
2 ). In this unit,v51 is the frequency when

the resonance conditiond50 is satisfied. For small values o
r, the resonantv is close to the frequencyvm at which the
gain is maximum.

Including the effect of the first-order nonlinearity inuAu2,
Eq. ~4! becomes

)
j 51,3

S d

dz
2 il j2 ibuAu2DA'0, ~5!

whereduAu2/dz'22 Im l0uAu2 and

b5
22 f h~l02d!~l012 Rel02d!/g

2 Im l0@2 Im l02 i ~3l02d!#23l0
212dl0

. ~6!
c

-

d

d

We now write d/dz→]/]z1c21]/]t, and treatA as a
function of z and t with a Fourier spectrum in time. We
expandl0(v) around a reference frequencyv5vs ,

l0~v!'l0~vs!1
]l0

]v
Dv1

1

2

]2l0

]v2 ~Dv!2

→l0~vs!1
]l0

]v
i

]

]t
2

1

2

]2l0

]v2

]2

]t2 , ~7!

whereDv5v2vs . It follows from Eqs.~5! and ~7! that

]A

]z
5 il0A2

1

ng

]A

]t
2

ia

2

]2A

]t2 1 ibuAu2A, ~8!

whereng[c/(11c]l0 /]v) anda[]2l0 /]v2 are complex
parameters. We now write 1/ng5m r1 im i , a5a r1 ia i , b
5b r1 ib i , and apply the transformations A
5A0A8exp@i(Kz81Vt8)#, z5z0z8, t5t0t82z/n0 , where

z051/~2l i1m i
2/2a i !, t0

25a iz0/2,

V5m i t0 /a i , 1/n052m r1a rm i /a i , ~9!

K5~l r2a rm i
2/2a i

2!z0 , A0
251/z0b i .

Equation~8! then becomes the GLE in standard form~1!,
where c152a r /a i and c252b r /b i are real parameter
and all primes have been dropped for notational con
nience.

In Eq. ~7!, truncation of the Taylor series at second ord
implies that we approximate the linear gain curve aroundv
5vs by a parabola. In Fig. 1, this parabola is shown as
dashed curve with the reference frequencyvs chosen to be
slightly less than the maximum gain frequencyvm . For the

FIG. 1. Solid line: the linear gain (2l i) as a function of the
frequencyv for r'3.8731022, with l i measured in units ofkw

and v measured in units of 2g0
2ckw /(11aw

2 ). Dashed line: the
linear gain curve for the GLE, expanded around the reference
quencyv5vs . The solid gain curve has a maximum atv5vm ,
which is close to the frequency of maximum gain of the dash
curve.
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3828 PRE 58C. S. NG AND A. BHATTACHARJEE
GLE, the maximum of the gain parabola is obtained at
frequencyvs2m i /a i , which is a good approximation fo
the maximum gain frequencyvm of the true gain curve with
vm5vs2m i /a i1O(uvm2vsu2) provided vs is close to
vm . Thus the frequencies for maximum gain of the tw
curves in Fig. 1 are very close to each other, as shown.

III. SINGLE-MODE SOLUTION AND ITS INSTABILITIES

Equation ~1! has an exact single-mode solution of t
form

A5A12v0
2 exp i $@2c21~c22c1!v0

2#z2v0t1f0%,
~10!

where v0 ,f0 are real constants. By Eqs.~7! and ~9!, the
frequency of the radiation field is given byv5vs2m i /a i
1v0 /t0 .

Single-mode solutions of the GLE may suffer two typ
of instabilities @1–5#. The first type is known as the
Benjamin-Feir instability when every mode is unstable.
such an instability were operative in a FEL, it would b
impossible to realize single-mode operation. The second
is known as the Eckhaus instability, which is said to occ
when a single-mode solution is stable if its frequency l
within a designated range, but unstable outside of that ra
We now analyze these instabilities in the context of FEL

We first consider the maximum gain mode withv050.
~We show below that if the mode with maximum gain
unstable, so are all other modes.! The linear stability of this
mode can be examined by writing the perturbed radiat
field as A5(11a)exp i(2c2z1f01u), where a
5ã cos(vdt) andu5 ũ cos(vdt) are small and real perturba
tions @5#. Linearizing Eq.~1!, we obtain

d

dz S ã

ũ D5S 222vd
2

22c22c1vd
2

c1vd
2

2vd
2D S ã

ũ D . ~11!

The eigenvalues for exponential solutions of Eq.~11! are

L52~11vd
2!6A~11vd

2!22~11c1
2!vd

422~11c1c2!vd
2.

~12!
e

f

pe
r
s
e.

n

In order for the mode to be unstable,L must have a positive
real part~for somevd!, which is possible only if 11c1c2
,0. For the FEL, if we choose the reference frequency as
frequency with maximum gain (vs5vm), it is easy to see
that the quantity 11c1c2 depends only onr. In the limit r
→0, we obtainvm→2g0

2ckw /(11aw
2 ) and 11c1c2→4/3,

which implies that the mode is stable~in this limit!. For
nonzero values ofr, since we do not have a simple analytic
formula for either the parametervm or the coefficient 1
1c1c2 , we carry out a numerical calculation. In Fig. 2, w
plot 11c1c2 as a function ofr. Since most FEL’s are char
acterized by small values ofr, we see that 11c1c2 is posi-
tive in the regime of physical interest. We conclude that
single modev5vm with maximum gain is stable, and henc
there is no Benjamin-Feir instability. This is consistent w
the earlier findings of@18# and @19#.

Although the maximum gain mode withv050 is linearly
stable, a mode withuv0uÞ0 may be unstable to the Eckhau
instability. To examine this possibility, we consider the li
earized equations

FIG. 2. The Benjamin-Feir stability parameter 11c1c2 , evalu-
ated at maximum gain withvs5vm andv050, as a function of the
Pierce parameterr.
d

dz S ã

ũ D5S 22a
0
2vd

222ic1v0vd

22c2a02~c1vd
222iv0vd!/a0

c1a0vd
222ia0v0vd

2vd
222ic1v0vd

D S ã

ũ D , ~13!

wherea0
2[12v0

2.0. The corresponding eigenvalues are

L5v0
2212vd

222ic1v0vd6$~v0
221!222c1vd

2@c2~12v0
2!1c1vd

2/2#14v0
2vd

214ic2v0vd~12v0
2!14ic1v0vd

3%1/2.
~14!

In the limit of smallvd , Eq. ~14! reduces to

L ——→
vd→0 H 22~12v0

2!,

22F11c1c21
2v0

2

v0
221

~11c2
2!G vd

2

2
12iv0vd~c22c1!

. ~15!
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We observe that the single mode of frequencyv0 is unstable
if the square bracket of the lower expression in Eq.~15! is
negative. Note that this is true for everyv0 if 1 1c1c2,0;
however, if 11c1c2.0, the mode will be unstable whe
v0

2.(11c1c2)/(31c1c212c2
2), which can always be satis

fied in the range 12v0
2.0. Therefore, the Eckhaus instab

ity will always occur.
From Eq.~13!, in the small-vd limit, we see that the un-

stable eigenvector is phase-aligned. In fact, the ratio of
phase component to the amplitude component in an eig
vector is given by

ũ

ã
5

2a0
21vd

212ic1v0vd1L

c1a0vd
222ia0v0vd

, ~16!

which is finite in the limit of zerovd for the upper eigen-
value in Eq.~15!, but tends to infinity for the lower unstabl
eigenvalue. In this limit, the Eckhaus instability is the pha
instability discussed in@19#. Furthermore, we see from Eq
~15! and ~16! that for a stable mode, the decay rate of t
amplitude perturbation~for small vd! is much larger than
that of the phase perturbation, as emphasized in@19#.

We define the spectral width asDvd[^(vd

2^vd&)
2&1/2, where ^vd&[*2`

` vdũ(vd ,z)dvd /
*2`

` ũ(vd ,z)dvd . From Eq. ~15!, we obtain ũ(vd ,z)
5 ũ(vd,0)exp(Lz);ũ0 exp@(2h1vd

21ih2vd)z# for the lower
eigenvalue, whereũ0 , h1 , and h2 are constants. Thus, w
deduce that the spectral half-width decays asDvd
5(2h1z)21/2}z21/2, consistent with the scaling reported
@19#. Note that this scaling applies to a continuum of mod
As shown below, for discrete modes the scaling holds u
the spectral width is reduced to about one mode, after wh
the width decays much faster thanz21/2.

IV. NUMERICAL SIMULATIONS

To test the analytical predictions discussed above,
have developed a pseudospectral computer code that
grates the GLE. The coefficientsc1 andc2 are calculated for
the parameters of the UCSB FEL@17#: kw5175 m21, ks
515.7 mm21, aw50.3, vp /ckw50.012, andg057. ~With
these parameters,r'2.8731022 and the effective curren
density is 4.43104 A m22.!

We first consider the maximum gain modevs5vm
'750 GHz, which is stable becausec1'20.580, c2'
20.574 and the stability condition 11c1c2.0 is satisfied.
We use periodic boundary conditions int and expandA in a
Fourier series of terms with relative frequencies that are m
tiples of the frequency widthdvs . The simulation is initial-
ized ~at z50! with random small values distributed ove
2048 Fourier modes. The unit of time is chosen such that
ratio of longitudinal frequency spacing to the principal fr
quency is given bydvs /vs5231023/75, similar to that in
the UCSB experiment@17#.

The solid curve in Fig. 3 shows the evolution of the~nor-
malized! spectral widthDv ~in units of the number of longi-
tudinal modes! as a function ofz/c ~in units of 1ms!. @Here
z is the actual physical distance along the axis, not the
e
n-

e

.
il
h

e
te-

l-

e

i-

mensionless variable in Eq.~1!.# We see thatDv decays by
about two decades whenz increases by roughly fou
decades—consistent with the analytical scalingDv}z21/2,
which appears to persist untilDv is reduced to about one
mode. The dotted curve is the~normalized! spectral width
DvA , calculated on the basis of the frequency spectrum
the amplitude ofA. We note thatDv and DvA are of the
same order of magnitude for a short, initial interval inz.
Thereafter,DvA decays at a much faster rate (}z21) than
Dv. This suggests that the amplitude ofA becomes approxi-
mately constant well before the full solution~including the
phase! attains a true single-mode state. The phase pertu
tions decay much slower than amplitude perturbations,
agreement with@19#. The amplitude becomes roughly con
stant~whenDvA;1! at z/c;5 ms. At this stage,Dv can be
viewed as a ‘‘macromode,’’ consisting of 10–20 eige
modes. This macromode eventually decays to one eig
mode atz/c;1 ms, but that is much longer than the electr
pulse length~;50 ms! in the experiment.

The spectral measurements of the UCSB FEL, reporte
@22#, appear to be consistent with our interpretation. We
lustrate this further in Fig. 4, which provides detailed info
mation on the radiation field atz/c'2.1ms. Figure 4~a! of
the Fourier amplitude spectrum shows nearly 50 modes
the frequency half-width. It is, therefore, not surprising th
the time series of the real part of the amplitude,Ar , has a
very spiky structure@Fig. 4~b!# and the phasef exhibits
large temporal variations@Fig. 4~c!#. However, this tempora
structure is not seen inuAu2 @Fig. 4~d!#, which has already
relaxed to a nearly constant value.

It is interesting to note that our scaling results are deriv
from equations that apply to a high-gain FEL amplifier, as
@18#, but are actually in agreement with the ‘‘klystro
model’’ developed in@19# for a FEL oscillator. We do not
believe this is mere coincidence. It suggests that the non

FIG. 3. The evolution alongz/c ~ms! of Dv ~solid line! and
DvA ~dotted line! ~in units of the number of longitudinal modes! in
a simulation of the GLE initialized with small random Fourier am
plitudes for c1'20.580 andc2'20.574. The final state is a
single-mode solution with frequency close to the central freque
vm .
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3830 PRE 58C. S. NG AND A. BHATTACHARJEE
ear physics of mode competition~in the absence of side
bands! is probably similar in an amplifier and an oscillator.
derivation of the GLE from the low-gain oscillator equation
~including the appropriate boundary conditions! will be the
subject of a future paper.

Next, for the same FEL parameters but with 512 Four
modes, we consider a single-mode solution withvs
50.977vm and v05m i t0 /a i , which corresponds toc1'
20.009 44 andc2'24.25. When we add a small perturba
tion, the system becomes unstable to the Eckhaus instab
although the principal mode is stable. Two distinct types
behavior can then occur: either the system undergoes s
taneous self-adjustment by shifting the unstable mode to
other mode inside the stable range, or the instability gro
virulently, exciting multiple modes and producing a chao
state. The type of behavior seen in any particular case
pends extremely sensitively on the initial conditions. In Fig
5–7, we illustrate by example the second type of behav
The upper~lower! curve in Fig. 5 showsDv (DvA) as a
function of z. Both quantities—Dv as well asDvA—are of
the same order of magnitude initially due to the smallness
the perturbation initiating the instability. This is followed b
a range inz over whichDv is larger thanDvA by more than
an order of magnitude, although neither quantity is ve
large. Thus, in the linear regime, the amplitude perturbat
grows more slowly than the phase perturbation, consis
with our interpretation of the Eckhaus instability as a pha
instability. In the nonlinear regime, due to strong mode co
pling, bothDv andDvA grow very rapidly and impulsively,
and the system evolves to a nonlinear state consisting
approximately 40 modes. Although the principal mode~as
well as modes in a narrow range around the principal mo!
is linearly stable because 11c1c2.0, the system does no
decay to a single-mode state. Instead, it evolves to a cha

FIG. 4. ~a! Fourier amplitudeAn as a function of the Fourier
mode numbern with the gain parabola plotted in arbitrary units,~b!
Ar , the real part of the amplitude,~c! the phasef, and ~d! the
amplitude squareuAu2 of the radiation field plotted as a function o
time in one simulation period, which is about 31.4ms at z/c
'2.1ms in the run with the parameters of Fig. 3.
r
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state, at least as long as we are able to follow it numerica
leading to ‘‘phase turbulence’’ of the type reported in@4#.
Figure 6 shows the magnitudeAn of the Fourier modes, in-
dexed byn, of one such chaotic state, with the parabo
showing the shape of the gain curve.~The precise value ofz
is not important here since we will see the same qualita
picture for anyz within the chaotic state.! We see that the
energy is distributed over a wide range within the posit
gain region, although the distribution is not as even betw
the competing modes as the gain curve might suggest. A
evident from Fig. 7, the power in this chaotic state is ve
spiky. The width of the spikes varies over a rather lar
range, with some spikes characterized by widths of the or
of (2a i /2l i)

1/2, given by the solitary-wave solution of th
GLE @9#. @The width of the solitary-wave solution is repre
sented in Fig. 7 as the width of the box~thick line! in the
middle top region.# It thus remains a possibility that some o
the spikes observed in experiments@10–13# are a result of
the Eckhaus instability of a single mode even without t

FIG. 5. The evolution alongz/c ~ms! of Dv ~solid curve! and
DvA ~dotted curve! for the case ofc1'20.009 44 andc2'
24.25 starting with an Eckhaus-unstable single-mode solution.

FIG. 6. AmplitudeAn in unit of 1025 m c2/e, as a function of
the Fourier mode numbern for the same parameters as Fig. 5. T
gain curve, a parabola, is also plotted in arbitrary units.
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intervention of sideband instabilities.
We now apply the GLE to mode narrowing in the pr

posed Linac Coherent Light Source~LCLS! device at SLAC,
which is expected to generate x rays from noise@23#. At the
end of a single pass of the undulator, the radiation field is
the early nonlinear saturation phase~as seen in@23#!, and
sideband amplitudes are sufficiently small that the GLE
mains applicable. Figure 8 shows the results of a simula
of the GLE using LCLS parameters@23#, with random initial
condition of the radiation field. While Fig. 8~a! shows the
time-averaged radiation power along the undulator axis,
8~b! shows the evolution ofDv andDvA . We see that the
spectral width decreases initially in the linear phase, th
increases slightly when the power starts to saturate, and
decreases again. With an undulator 100 m long, the plan
LCLS device exhibits some tendency for mode narrowi
but sinceDvA is of the same order asDv, we cannot expec
either the multimode amplitude or the phase perturbation
decay in a single pass. For a longer undulator, the GLE m
be modified to include the effects of sidebands, which m
broaden the spectrum. This is left to future work.

V. SUMMARY

The GLE gives a remarkably precise and detailed desc
tion of mode competition and single-mode operation o
FEL. We have obtained analytical conditions for t
Benjamin-Feir and Eckhaus instabilities of a single-mode
lution. We have shown that the mode with maximum gain
always stable, and hence there is no Benjamin-Feir insta
ity. However, the Eckhaus~or phase instability! always oc-
curs. We have verified the analytical results by simulatio
and examined conditions under which stable single-mode
eration can occur, with specific applications to the UC
FEL. On the basis of our results, we conclude that sing

FIG. 7. Amplitude squareuAu2, in unit of 10210 m2 c4/e2, as a
function of time in one simulation period which is about 12.7ms at
the samez as Fig. 6. The width of the box~thick line, middle top!
represents the solitary wave width (2a i /2l i)

1/2.
n

-
n

g.

n
en
ed
,

to
st
y

p-
a

-
s
il-

,
p-

-

mode operation did not occur in the UCSB FEL experime
@17#.

When the Eckhaus instability occurs, it can lead to tw
distinct types of behavior: either the system undergoes sp
taneous self-adjustment by shifting the unstable mode to
other mode inside the stable range, or the instability gro
virulently, exciting multiple modes and producing a chao
state. The second type of behavior can thwart single-m
operation, and in the nonlinear regime, produce a sudden
rapid chaotization of the optical signal. This is a regime th
has not received sufficient attention in FEL experimen
which can be an interesting test-bed for theories of ‘‘pha
turbulence.’’
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FIG. 8. ~a! Time-averaged radiation field power~GW! as a func-
tion of undulator lengthz (m) in a simulation of the GLE using
LCLS parameters with random initial condition.~b! The evolution
of Dv andDvA ~in unit of the number of modes! in simulation~a!.
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